International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011 22

ESCORTING DATA FROM CCA2 ATTACK ON SAC

Balaji S., Jeeva R., Ayyam Perumal M., Mano P.

SCAD College of Engineering & Technology

ABSTRACT

The improved system of SAC prevents many attacks like resisting adaptive chosen-cipher text attack and can be
conveniently incorporated with the context-based coding. So the attacker still cannot reduce the uncertainty of
which symbol is splitted.But it doesn't talk about detecting any alteration or loss in data in the middle of the
transmission and the person’s authenticity that is sending and receiving the data involved in the transmission is
missing. In our system, improved SAC are escorting SAC by adding information about sender and preserves the
message content by computing hash function which prevents not only attacks mentioned previously but also

maintains the integrity of data.

l. INTRODUCTION

Arithmetic coding is a popular and efficient
lossless compression technique that maps a sequence
of source symbols to an interval of numbers between
0 and 1 [1]. The encoder produces a code stream of
bits that uniquely represents the interval; the decoder
then maps the code stream to the original source
sequence. In arithmetic coding, an entire source
sequence is mapped to a single code stream.
Therefore, a single error in an arithmetic code stream
often causes error avalanches at the decoder,
rendering the decoded code stream useless. Full
resynchronization occurs when the decoder can exactly
determine the initial b bits of the code stream. In this
case the entire original source sequence can be
reproduced exactly. Partial resynchronization occurs
when the decoder only determines the current interval
after b bits of the code stream.

Binary arithmetic coding involves recursive
partitioning the range (0, 1) in accordance with the
relative probabilities of occurrence of the two input
symbols [2]. The overall length within the range (0, 1)
allocated to each symbol is preserved, but the
traditional assumption that a single contiguous interval
is used for each symbol is removed. A key known to
both the encoder and decoder is used to describe
where the intervals are “split” prior to encoding each
new symbol. a key-based interval splitting arithmetic
coder can be implemented using techniques similar to
those used in traditional arithmetic coding and can
benefit from the same optimizations for speed, finite
precision, etc. The main difference lies in the doubling
of the number of intervals, which doubles the memory
requirement because the upper and lower limits of two

intervals must be maintained. The number of potential
split locations—and therefore the level of secrecy— are
determined in part by the precision of the key. The key
can be used to directly identify split locations, or it can
reference locations in a table known to both the
encoder and decoder. The splitting produces
encryption, the level of which is a function of the
specific attributes of the key and the encoded
sequence.

A chaos-based adaptive arithmetic
coding-encryption technique has been designed,
developed and tested and its implementation has been
discussed[3]. For typical text files, the proposed
encoder gives compression between 67.5% and 70.5%,
the zeroth-order compression suffering by about 6%
due to encryption, and is not susceptible to previously
carried out attacks on arithmetic coding algorithms.
Characteristics of chaotic systems like ergodicity,
mixing and sensitivity to initial conditions have been
seen as analogous to and/or giving rise to confusion
and diffusion balance and avalanche property , known
properties of a good cipher. The proposed algorithm is
resistant to chosen plaintext attacks because of the
following. The model dynamically reorders the
frequency of the input symbols according to the
coupled chaotic system, and depends on all text that
has been coded since the initialization of the model.
The model dynamically reorders the frequency of the
input symbols according to the coupled chaotic system,
and depends on all text that has been coded since the
initialization of the model. The output from the engine
is in the form of variable sized words and the individual
bit output corresponding to inserted symbols cannot be
determined.

Balaji et at.

For SAC, a series of permutations are applied at
the input and the output of the encoder[4]. The overall
system provides simultaneous encryption and
compression, with negligible coding efficiency penalty
relative to a traditional arithmetic coder. The system
consists of a first permutation step applied to the input
sequence, arithmetic coding using interval splitting, and
a second permutation step applied to the bits produced
by the coder. A key sequence is input to a key
scheduler which in turn provides key information to both
permutation steps and to the interval splitting arithmetic
coder. The key scheduler utilizes information from the
split AC encoder output. The system offers both
compression and security, and thwarts all known
attacks aimed at obtaining information about the input
or output permutation or the interval splitting keys.

Compared with the original SAC,[5] improved
SAC remove the input symbol permutation step. In
addition, improved SAC replace the output codeword
permutation step with a simple bit-wise XOR step. The
design of the key scheduler is very flexible; we can
either use the keyed XOR operation as in or other
highly efficient pseudorandom number generators. The
only private information of the improved system is the
seed used in the key scheduler, which is assumed to
be of length 128 bits, so as to ensure high enough
level of security. It resists the adaptive chosen-cipher
text attack and can be conveniently incorporated with
the context- basedcoding.

In the present paper, we have identified the major
flaw in the previous algorithm that is it deals with the
security of data before transmission. That is when the
attacker saw the codeword he shouldn’t get nothing
from the codeword. Any cryptography concept must
satisfy its own four goals that are confidentiality,
authentication, Data integrity and non-repudiation. So
we going to make the SAC to satisfy these goals to

Escorting Data from CCA2 attack on SAC...

23

escort the data from known attacks and the attacks
happened in the transmission like Man-in-Middle attack,
Replay attack etc.But while in the transmission it didn’t
talk or assured about detecting the data alteration or
data loss and points the intruder who involved in the
transmission unauthorized. We have framed our
architecture by adding our system before and after the
SAC process which transforms the text into numbers
and the preservation and data integrity is maintained
by adding hash function and sender’s identity during
and after the transmission.

IIl. REVIEW OF SAC

In the SAC two permutation steps are applied to
the input symbol sequence and the output codeword,
respectively. Let S=s1,52, ... sN be the symbol
sequence to be encoded. The encoding procedure of
the SAC is shown as follows [5].

Step 1 Map the sequence S into a block having
four columns and N4 rows.

Step 2 Perform two key-driven cyclical shift steps
to the resulting symbol block, and read out the data in
raster order to obtain the permuted symbol sequence
St.

In Fig. below, we show an example of the cyclical
shift steps, where S'is of length 16 and the key vectors
controlling the column CS= [2 3 0 1] and the row
shift offsets RS= [1 3 1 2] are and, respectively.

Step 3 Input to the ISAC encoder and obtain the
intermediate codeword C=c1, c2,..........cNc.

Step 4 Set C=cl,c,.........cNc—4 by
removing the last four bits of. Map into a block having
four columns and [(Nc—4)/4] rows.

112134 9

Input Sequence | 5 | 6 | 7 | 8 | Column Shift 13
—_— —_—

5135 90| CS=[2301] 1

13 (14115 16 5

3| 16 69|63

71 4 Row shift 10| 7 | 4 | 13 | Output Sequence
_ —_—

M8 rs=parg [T [™1 sgs,.s,

15 | 12 B{12]15]|2

Fig. 1. Cyclical shift steps

24 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

Step 5 Perform the first round of shifts to the
resulting bit block, which consists of two key-driven
cyclical shift steps, one operating on columns and the
other on rows. Here, the key vectors controlling the
shift offsets depend on the last four bits of C.

Step 6 Reappend to the resulting bit block.

Step 7 Perform the second round of shifts to the
resulting bit block, which consists of two key-driven
cyclicalshift steps, one operating on columns and the
other on rows. Here, the key vectors controlling the
shift offsets are fixed for all.

Step 8 Read out the data in raster-order from the
resulting block to obtain the final bit stream.

Improved SAC

The improved system which mainly consists of
two parts:

1. an ISAC encoder
2. a key scheduler

Let the symbol sequence S=s1, s2,...sN be that
is to be encoded. The basic steps of performing the
encoding are as follows.

Step 1 Encode S using an ISAC encoder with
splitting key K vector. Denote the generated bit stream

C=cl,c2,.........cNc as, where Nc satisfies (1).
S c B
ISAC Encoder ‘/~|3 >
4 K E
- 1
Key
Scheduler[€ ™ Seed

Fig. 2. Improved SAC

Step 2 Perform bit-wise XOR operation between
C and a key stream E, where has the same length as
C. In other words, the final bit stream B=C® E

Compared with the original SAC, we remove the
input symbol permutation step. In addition, we replace
the output codeword permutation step with a simple
bit-wise XOR step. The only private information of the
improved system is the seed used in the key scheduler,

which is assumed to be of length 128 bits, so as to
ensure high enough level of security.

System Framework

K ASCII Arithmetic
Conversion Logic
M
C
Hash
Function
Sender
IP

Fig. 3. Encryption

Intermediate
Value

ASCII /

Value

A 4

A

Fig. 4. Arithmetic Logic

Encryption

1. Create the message to be sent and give the key
to encrypt the message.

2. Retrieve the sender's IP and calculates the hash
code for the message.

3. Perform ASCII conversions for these three values
and Fed ino Arithmetic logic.

4. In the Arithmetic logic, the ASCII code undergoes
some arithmetic calculations and at the end key
length is added.

5. Append a random value at the end of each
parameter. For message the value ranges from
0 to 5. For key the value ranges from 6 to 10.
For Sender ip the value ranges from 11 to 15.

Balaji et al Escorting Data from CCA2 attack on SAC...

6. After creating this codeword, append the hash
value at the end of the cipher and transmits the
message.

Centralization

1. The transmitted messages are received by the
proxy and retransmitted to the intended client
after checking its IP with its list.

2. It maintains a database which has the legitimate
users IP along with their username and
password.

3. Every time it receives the message, it retrieves
the sender IP from the cipher and try to find the
match with the list of IP stored in the database.

Decryption

1. After receiving the cipher from Proxy, retrieve the
hash value from the cipher and store it in
separate area.

2. Fed the remaining cipher into inverse arithmetic
logic and perform text to ASCII conversion.

3. Separate the remaining three parameters and
store in different area for easy retrieval.

4. Get the receiver key to decrypt and try for a
match with the key retrieve from the cipher.

5. If it matches, then retrieve the sender IP and
Check with the proxy. If it matches go for next
checking task.

6. Then calculate the hash code for the decrypted
message and try for a match with the hash code
retrieve from the cipher.

7. If all the above conditions are satisfied, then
displays the message to the receiver.

Receiver’s Ke!
y _¢ Check with

Compare proxy

<K
Inverse J
Arithmetic AS_F:”;I-O ™ Sender IP
Logic es

> M

: |

Hash

H —l Function
Compare

Fig. 5. Decryption

25

Message Creation

Make sure that server is running by getting the
response from it to the client who wishes to start the
transmission. After getting the response create the
message to be transmitted by using ASCIl key
conversion and Arithmetic Logic. Then get the key
known to both the sender and the receiver to encrypt
the created message. Calculate the Hash code of the
Original message and append to the above created
cipher. Then encrypt the key as in the method
message encrypted. Append the encrypted key to the
above created cipher. Get the source ID of the client
who is transmitting and destination of the client who is
going to receive. The parts in the cipher like message,
key, sender ID, destination ID and hash value of the
original message are separated by random numbers in
different ranges. After finishing all this process, transmit
the message.

Monitoring Transmission

Centralised proxy is in ready state to receive the
messages and to transmit the message. Once it
receives the message, it strips the source ID and
destination ID.Then it checks the source ID with the
database stored in proxy for getting the match. If it
matches precede the transmission and forward the
message to the intended client. If it doesn't match with
the ID stored in the database, deny the transmission
of the client who just transmitted. And ask the client if
he has an interest in registering this group. If he
accepted, then ask the user to enter his details like
username, password efc. After entering his username
check its availability with the database stored in the
centralised proxy. And then stipulates the user to
choose the password between 8 to 16 characters.
Once the details verified, Send the Acknowledgement
for the accepted registration to the intended client.

Key Creation and Transmission

If the client wishes to transmit, he has to send
the ready message to the centralised proxy. Proxy in
turn generates a random key based on the client
password who wishes to start the transmission. Send
this random key to the client who is ready to
transmitting. Then the sender in turn sends the key to
the intended client. After receiving this message to the
proxy, the sender key is encrypted with the intended
client's password and forward the encrypted the key to
the destination. Once the receiver receive this
encrypted the key, using his password he can decrypt

26 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

the key transmitted by the sender. Then the
communication starts. On further onwards all the
messages are encrypted and decrypted with the
temporary key known by both sender and receiver {ill
the session has finished. Once the session is
terminated the temporary key will be expired. For the
next session another key will be generated for the
same client.

Message Reception

Once the client receives the message from the
proxy it decrypts the message with the receiver’s key.
After it decrypts it separates the parts of the cipher like
original message, key, senders ID and the hash value
of the original message. Compare the decrypted key
with the entered receiver key. If it matches checks the
sender ID with the database stored in the centralised
proxy. If the result is Positive then calculate the hash
value of the decrypted message and compares with
the decrypted hash value of original message. If it
matches displays the message to the receiver.

lll. ALGORITHM
Input: M-Message, K-Key
Function encrypt () return value
Append random no (<5)
B[l=Alogic(IP,k.length)
Append random no (<10 & >5)
C[]=Alogic(k,k.length)
Append random no (<15 & >10)
Append hash (m)
Merge the arrays
Return merged array
Alogic(S,sk.length)
Begin
For i=0 to s.length do
A[]=ASClI(s)
A[]=10a[]+15+sk.length
end

IV. DESCRIPTION
Get Data to be sent.

2. Perform ASCII Conversion and Alogic to the
above data.

3. Append Random no to the above result in the
range between 0 to 5.

Retrieve Sender IP and Key from sender.

5. After the conversion, Random no is appended to
the key and Sender IP in the range between 6
to 10 and in the range between 11 to 15.

6. Calculate the Hash value of the original message
and Append the value at the end of the cipher.

V. CONCLUSION

In the previous system is immune against all the
known attacks including the adaptive chosen-cipher text
attack. In this system, the techniques we have used
not only prevent the attacks overcome in the previous
systems but also the attacks happen during the
transmission also detected and prevented. In the future
we are going to develop a better scheme using the
same technique to improve the compression efficiency.

REFERENCES

[1] Jiantao Zhou, Oscar C. Au, and Peter Hon-Wah Wong,
“Adaptive chosen-ciphertext attack on secure arithmetic
coding” /EEE Trans. Signal Process., vol. 57, no. 5,
pp. 1825-1838, May 2009.

[2] H. Kim, J. T. Wen, and J. D.Villasenor, “Secure
arithmetic Coding,” /EEE Trans. Signal Process., vol.
55, no. 5, pp. 2263-2272, May 2007.

[8] J.T. Wen, H. Kim, and J. D. Villasenor, “Binary
arithmetic coding with key-based interval splitting,”
IEEE Signal Process. Lett, vol. 13, pp. 69-72, Feb.
2006.

[4] R. Bose and S. Pathak, “A novel compression and
encryption scheme using variable model arithmetic
coding and couple chaotic system,” /EEE Trans.
Circuits Syst. I, vol. 53, pp. 848-857, Apr. 2006.

[5] P. W. Moo and X. Wu, “Resynchronization properties
of arithmetic coding”, in Proc. IEEE Int. Conf. Image
Process., Oct. 1999, pp. 545-549

